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West University of Timişoara, V. Parvan Ave. 4, RO-1900 Timişoara, Romania
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Abstract. We propose a generalization of the isometry transformations to the geometric context
of the spin field theories where the local frames are explicitly involved. We define the external
symmetry transformations as isometries combined with suitable tetrad gauge transformations and
we show that they form a group which is locally isomorphic with the isometry one. We point out
that these symmetry transformations leave invariant the field equations in local frames and have
generators with specific spin terms that represent new physical observables. The examples we give
are the generators of the central symmetry and those of the maximal symmetries of the de Sitter
and anti-de Sitter spacetimes for which we derive the spin terms in different tetrad gauge fixings.

1. Introduction

In general relativity [1–3] the development of the quantum field theory in curved spacetimes [4]
gives rise to many difficult problems related to the physical interpretation of the one-particle
quantum modes that may indicate how to quantize the field. This is because the form and
the properties of the particular solutions of the free field equations, in the cases when these
can be analytically solved [5, 6], are strongly dependent on the procedure of separation of
variables and, implicitly, on the choice of the local chart. Moreover, when the fields have spin
the situation is more complicated since then the field equations and, therefore, the form of
their particular solutions depend, in addition, on the tetrad gauge in which one works [1, 7].
In these conditions it would be helpful to use the traditional method of the quantum theory in
flat spacetime based on the complete sets of commuting operators that determine the quantum
modes as common eigenstates and give physical meaning to the constants of the separation of
variables which are just the eigenvalues of these operators. A good step in this direction could
be to proceed as in special relativity, looking for the generators of the geometric symmetries
similar to the familiar momentum, angular momentum and spin operators of the Poincaré
covariant field theories [8].

However, the relativistic covariance in the sense of general relativity is too general to play
the same role as the Lorentz or Poincaré covariance in special relativity. In other respects,
the tetrad gauge covariance of the theories with spin represents another kind of general
symmetry that is not able to itself produce conserved observables [1]. For this reason we
have to concentrate only upon some special transformations of a well defined Lie group with
significant parametrization from the geometric point of view, which should leave invariant the
form of the field equations. Obviously, these may be just the isometry transformations that
point out the spacetime symmetry giving us the specific Killing vectors [1,3,9]. The physical
fields, (minimally) coupled with the gravitational one, take over this symmetry, transforming
according to appropriate representations of the isometry group. In the case of the scalar vector
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or tensor fields these representations are completely defined by the well known rules of the
general coordinate transformations since the isometries are in fact particular automorphisms.
The problem of the behaviour under isometries of the fields with half-integer spin that explicitly
depend on the tetrad gauge fixing remains open.

Another important problem is how to define the generators of these representations for any
spin. It is known that there is a standard operator-valued representation of the isometry group in
the space of scalar functions whose generators can be written with the help of the Killing vectors
in a similar manner as are the orbital angular momentum operators of special relativity. But how
can we define the corresponding spin parts of the generators of the representations according
which the fields with spin may transform? In the case of the Dirac field these spin parts are
known for the angular momentum in the diagonal tetrad gauge of central backgrounds [10]
and even for any generator corresponding to a Killing vector in any chart and arbitrary tetrad
gauge fixing [11]. However, we cannot say that this problem is then generally solved for fields
with any spin obeying different free or coupled field equations.

Our aim here is to propose a way to solve the above-mentioned problems in the case of the
tetrad gauge covariant theories of fields defined on curved spacetimes with given symmetries.
Our main objectives are to find how we must transform these fields under isometries in order
to leave the form of the field equations invariant and to derive the general expression of the
generators of these transformations.

We start with the idea that if we intend to study the symmetry of a physical theory we must
take into consideration the whole geometric context, including the positions of the local frames
given by the tetrad fields. This is because the spin is defined just with respect to the axes of
these frames. Then it is natural to require the symmetry transformations to preserve not only
the form of the metric tensor but the tetrad gauge too. Such transformations can be constructed
as isometries combined with suitable tetrad gauge transformations necessary to keep the tetrad
field components unchanged. In this way we obtain the external symmetry group, showing
that it is locally isomorphic with the isometry group. Moreover, there are arguments that this
is in fact isomorphic with the universal covering group of the isometry one.

The next step is to define the operator-valued representations of the external symmetry
group carried by spaces of fields with spin. We point out that these are induced by the
linear finite-dimensional representations of the SL(2,C) group. This is why the symmetry
transformations which leave the field equations invariant have generators with a composite
structure. These have the usual orbital terms of the scalar representation and, in addition,
specific spin terms which depend on the choice of the tetrad gauge, even in the case of the
fields with integer spin. In general, the spin and orbital terms do not commute to each other
apart from some special gauge fixings where the fields transform manifestly covariant under
external symmetry transformations.

Based on these results, we study two important examples, namely the central symmetry and
the maximal symmetry of the de Sitter (dS) and anti-de Sitter (AdS) spacetimes. In the case of
the central geometries we use central charts with Cartesian coordinates and the Cartesian tetrad
gauge which allowed us recently to find new analytical solutions of the Dirac equation [12].
We show that in this gauge fixing the central symmetry becomes global and, consequently, the
spin parts of its generators are the same as those of special relativity [13,14]. This is important
from the technical point of view since in the largely used diagonal tetrad gauge in spherical
coordinates [15, 16] one obtains that the spin terms are partially hidden [10]. For the dS and
AdS spacetimes we calculate the generators of the representations of the external symmetry
group in central charts with our Cartesian gauge and in Minkowskian charts [1] with another
gauge where the fields are manifestly covariant under the Lorentz symmetry [17].

In section 2 we point out that the general relativistic covariance and the tetrad gauge one
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can be treated together, introducing the group of combined transformations defined as tetrad
gauge transformations, followed by automorphisms. Section 3 is devoted to our approach.
Therein we define the external symmetry transformations, show that these form a Lie group
and study the operator-valued representations of this group and its Lie algebra. In sections 4
and 5 we discuss the mentioned examples.

We present our proposal in terms of the relativistic quantum mechanics in the sense of
general relativity, avoiding consideration of the specific problems of the quantum field theory
or use of too complicated mathematical methods. We work in natural units with h̄ = c = 1.

2. Relativistic covariance

In the Lagrangian field theory in curved spacetimes the relativistic covariant equations of
scalar, vector or tensor fields arise from actions that are invariant under general coordinate
transformations. Moreover, when the fields have spin in the sense of the SL(2,C) symmetry
then the action must be invariant under tetrad gauge transformations [7]. The first step to
our approach we propose here is to embed both these kinds of transformations into new ones,
called combined transformations, to help us to understand the relativistic covariance in its most
general terms.

2.1. Gauge transformations

Let us consider the curved spacetime M and a local chart (natural frame) of coordinates
xµ, µ = 0, 1, 2, 3. Given a gauge, we denote by eµ̂(x) the tetrad fields that define the local
frames, in each point x, and by êµ̂(x) those of the corresponding coframes. These have the
usual orthonormalization properties

êµ̂α e
α
ν̂ = δ

µ̂

ν̂
êµ̂α e

β

µ̂
= δβα eµ̂ · eν̂ = ηµ̂ν̂ êµ̂ · êν̂ = ηµ̂ν̂ (1)

where η = diag(1,−1,−1,−1) is the Minkowski metric. From the line element

ds2 = ηµ̂ν̂ dx̂µ̂ dx̂ν̂ = gµν(x) dxµ dxν (2)

expressed in terms of 1-forms, dx̂µ̂ = êµ̂ν dxν , we get the components of the metric tensor of
the natural frame,

gµν = ηα̂β̂ ê
α̂
µê

β̂
ν gµν = ηα̂β̂e

µ

α̂
eν
β̂
. (3)

These raise or lower the natural vector indices, i.e. the Greek symbols, ranging from zero to
three, while for the local vector indices, denoted by hatted Greek symbols and having the same
range, we must use the Minkowski metric. The derivatives ∂̂ν̂ = e

µ

ν̂
∂µ satisfy the commutation

rules

[∂̂µ̂, ∂̂ν̂] = eαµ̂e
β

ν̂
(êσ̂α,β − êσ̂β,α)∂̂σ̂ = C ··σ̂

µ̂ν̂· ∂̂σ̂ (4)

defining the Cartan coefficients which help us to write the connection components in local
frames as

�̂σ̂
µ̂ν̂ = eαµ̂e

β

ν̂
(êσ̂γ �

γ

αβ − êσ̂β,α) = 1
2η

σ̂ λ̂(Cµ̂ν̂λ̂ + Cλ̂µ̂ν̂ + Cλ̂ν̂µ̂) (5)

where �γ

αβ are the usual Christoffel symbols.
The Minkowski metric η remains invariant under the transformations of its gauge group,

G(η) = O(3, 1). This has as subgroup the Lorentz group, L
↑
+, of the transformations

�[A(ω)] corresponding to the transformations A(ω) ∈ SL(2,C) through the canonical
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homomorphism [8]. In the standard covariant parametrization, with the real parameters
ωα̂β̂ = −ωβ̂α̂ , we have

A(ω) = e− i
2ω

α̂β̂Sα̂β̂ (6)

where Sα̂β̂ are the covariant basis generators of the sl(2,C) Lie algebra which satisfy

[Sµ̂ν̂ , Sσ̂ τ̂ ] = i(ηµ̂τ̂ Sν̂σ̂ − ηµ̂σ̂ Sν̂τ̂ + ην̂σ̂ Sµ̂τ̂ − ην̂τ̂ Sµ̂σ̂ ). (7)

For small values of ωα̂β̂ the matrix elements of the transformations � can be written as

�
µ̂ ·
· ν̂ [A(ω)] = δ

µ̂

ν̂
+ ω

µ̂ ·
· ν̂ + · · · . (8)

Now we assume that M is orientable and time-orientable such that L↑
+ can be considered

as the gauge group of the Minkowski metric [3]. Then the fields with spin can be defined as
in the case of the flat spacetime, with the help of the finite-dimensional linear representations,
ρ, of the SL(2,C) group [8]. In general, the fields ψρ : M → Vρ are defined over M with
values in the vector spaces Vρ of the representations ρ. In what follows we systematically use
the bases of Vρ labelled only by spinor or vector local indices defined with respect to the axes
of the local frames given by the tetrad fields. These will not be written explicitly, except when
demanded by the concrete calculation needs.

The relativistic covariant field equations are derived from actions [1, 7]

S[ψρ, e] =
∫

d4x
√
g L(ψρ,D

ρ

µ̂
ψρ) g = | det(gµν)| (9)

depending on the matter fields, ψρ , and the components of the tetrad fields, e, which represent
the gravitational degrees of freedom. Recently, it was shown that this action can be completed
by adding a term with the integration measure d4x $ (instead of d4x

√
g) where $ can be

expressed in terms of scalar fields independent on e (or g) [18]. This new term allows one to
define a new global scale symmetry which, in our opinion, is compatible with the geometric
symmetries we study here. Therefore, without loss of generality, we can restrict ourselves to
actions of the traditional form (9) in which the canonical variables are the components of the
fields ψρ and e.

The covariant derivatives,

D
ρ

α̂
= e

µ

α̂
Dρ

µ = ∂̂α̂ +
i

2
ρ(S

β̂ ·
· γ̂ ) �̂

γ̂

α̂β̂
(10)

assure the covariance of the whole theory under the tetrad gauge transformations,

êα̂µ(x) → ê′α̂
µ (x) = �α̂ ·

· β̂[A(x)] êβ̂µ(x)

e
µ

α̂
(x) → e′µ

α̂
(x) = �

· β̂
α̂ ·[A(x)] e

µ

β̂
(x)

ψρ(x) → ψ ′
ρ(x) = ρ[A(x)]ψρ(x)

(11)

determined by the mappings A : M → SL(2,C) the values of which are the local SL(2,C)
transformationsA(x) ≡ A[ω(x)]. These mappings can be organized as a group, G, with respect
to the multiplication × defined as (A′ × A)(x) = A′(x)A(x). The notation Id stands for the
mapping identity, Id(x) = 1 ∈ SL(2,C), whileA−1 is the inverse ofA, (A−1)(x) = [A(x)]−1.

2.2. Combined transformations

The general coordinate transformations are automorphisms of M which, in the passive mode,
can be seen as changes of the local charts corresponding to the same domain of M [3, 9].
If x and x ′ are the coordinates of a point in two different charts then there is a mapping
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φ between these charts giving the coordinate transformation, x → x ′ = φ(x). These
transformations form a group with respect to the composition of mappings, ◦, defined as
usual, i.e. (φ′ ◦ φ)(x) = φ′[φ(x)]. We denote this group by A, its identity map by id and the
inverse mapping of φ by φ−1.

The automorphisms change all the components carrying natural indices including those of
the tetrad fields [1] changing thus the positions of the local frames with respect to the natural
ones. If we assume that the physical experiment makes reference to the axes of the local
frame then situations can arise when several corrections of the positions of these frames are
needed before (or after) a general coordinate transformation. Obviously, these have to be done
with the help of a suitable gauge transformation associated to the automorphisms. Thus it
is useful to introduce the combined transformations denoted by (A, φ) and defined as gauge
transformations, given byA ∈ G, followed by automorphisms, φ ∈ A. In this new notation the
pure gauge transformations appear as (A,id) while the automorphisms are denoted by (Id, φ).

The effect of a combined transformation (A, φ) upon our basic fields, ψρ, e and ê is
x → x ′ = φ(x), e(x) → e′(x ′), ê(x) → ê′(x ′) and ψρ(x) → ψ ′

ρ(x
′) = ρ[A(x)]ψρ(x)

where e′ are the transformed tetrads of the components

e
′µ
α̂

[φ(x)] = �
· β̂
α̂ ·[A(x)] e

ν

β̂
(x)

∂φµ(x)

∂xν
(12)

while the components of ê′ have to be calculated according to equations (1). Thus we have
written down the most general transformation laws that leave invariant the action in the sense
that S[ψ ′

ρ, e
′] = S[ψρ, e]. The field equations derived from S, written in local frames as

(Eρψρ)(x) = 0, covariantly transform according to the rule

(Eρψρ)(x) → (E′
ρψ

′
ρ)(x

′) = ρ[A(x)](Eρψρ)(x) (13)

since the operators Eρ involve covariant derivatives [1].
The association among the transformations of the groups G and A must lead to a new

group with a specific multiplication. In order to explore the form of this new operation it is
convenient to use the composition among the mappings A and φ (taken only in this order)
giving new mappings, A ◦ φ ∈ G, defined as (A ◦ φ)(x) = A[φ(x)]. The calculation rules
Id ◦ φ = Id, A ◦ id = A and (A′ × A) ◦ φ = (A′ ◦ φ) × (A ◦ φ) are obvious. With these
ingredients we define the new multiplication

(A′, φ′) ∗ (A, φ) = ((A′ ◦ φ) × A, φ′ ◦ φ). (14)

It is clear that now the identity is (Id, id) while the inverse of a pair (A, φ) reads

(A, φ)−1 = (A−1 ◦ φ−1, φ−1). (15)

The operation ∗ is well defined and represents the composition among the combined
transformations since these can be expressed, according to their definition, as (A, φ) =
(Id, φ) ∗ (A, id). Furthermore, we can convince ourselves that if we perform successively
two arbitrary combined transformations, (A, φ) and (A′, φ′), then the resulting transformation
is just (A′, φ′)∗(A, φ) as given by equation (14). This means that the combined transformations
form a group with respect to the multiplication ∗. It is not difficult to verify that this group,
denoted by G̃, is the semidirect product G̃ = G�A where G is the invariant subgroup while A
is a usual one.

In the theories involving only vector and tensor fields we do not need to use the combined
transformations defined above since the theory is independent of the positions of the local
frames. This can be easily shown even in our approach where we use field components with
local indices. Indeed, if we perform a combined transformation (A, φ) then any tensor field
of rank (p, q),

ψ
α̂1,α̂2,...,α̂p

β̂1,β̂2,...,β̂q
= êα̂1

µ1
· · · êα̂pµp

e
ν1

β̂1
. . . e

νq

β̂q
ψ

µ1,µ2,...,µp

ν1,ν2,...,νq (16)
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transforms according to the representation

ρ
β̂1,β̂2,...,β̂q ; α̂′

1,α̂
′
2,...,α̂

′
p

α̂1,α̂2,...,α̂p; β̂ ′
1,β̂

′
2,...,β̂

′
q

(A) = �
β̂1 ·
· β̂ ′

1
(A) . . . �

· α̂′
1

α̂1 ·(A) . . . (17)

such that the resulting transformation law of the components carrying natural indices,

ψ ′µ1,...
ν1,...

(x ′) = ∂x ′µ1

∂xσ1
· · · ∂xτ1

∂x ′ν1
· · · ψσ1,...

τ1,...
(x) (18)

is just the familiar one [1]. In other words, in this case the effect of the combined
transformations reduces to that of their automorphisms. However, when the half-integer spin
fields are involved this is no longer true and we must use the combined transformations of G̃
if we want to keep the positions of the local frames under control.

3. External symmetry

In general, the symmetry of any manifold M is given by its isometry group whose
transformations leave the metric tensor invariant in any chart. The scalar field transforms under
isometries according to the standard scalar representation generated by the orbital generators
related to the Killing vectors ofM [1,3,9]. In what follows we propose a possible generalization
of this theory of symmetry to the fields with spin, defining the external symmetry group and
its representations.

3.1. Isometries

There are conjectures when several coordinate transformations, x → x ′ = φξ (x), depend on
N independent real parameters, ξa (a, b, c, . . . = 1, 2, . . . , N), such that ξ = 0 corresponds
to the identity map, φξ=0 = id. These mappings form a Lie group [19] if they accomplish the
composition rule

φξ ′ ◦ φξ = φf (ξ ′,ξ) (19)

where the functions f define the group multiplication. These must satisfy f a(0, ξ) =
f a(ξ, 0) = ξa and f a(ξ−1, ξ) = f a(ξ, ξ−1) = 0 where ξ−1 are the parameters of the inverse
mapping of φξ , φξ−1 = φ−1

ξ . Moreover, the structure constants of this group can be calculated
as [20]

cabc =
(
∂f c(ξ, ξ ′)
∂ξa∂ξ ′b − ∂f c(ξ, ξ ′)

∂ξb∂ξ ′a

)∣∣∣∣
ξ=ξ ′=0

. (20)

For small values of the group parameters the infinitesimal transformations, xµ → x ′µ =
xµ + ξak

µ
a (x) + · · · , are given by the vectors ka whose components,

kµa = ∂φ
µ
ξ

∂ξa

∣∣∣∣∣
ξ=0

(21)

satisfy the identities

kµa k
ν
b,µ − k

µ

b k
ν
a,µ + cabck

ν
c = 0 (22)

resulting from equations (19) and (20).
In what follows we restrict ourselves to considering only the isometry transformations,

x ′ = φξ (x), which leave invariant the components of the metric tensor [1, 9], i.e.

gαβ(x
′)
∂x ′α

∂xµ

∂x ′β

∂xν
= gµν(x). (23)
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These form the isometry group I (M) ⊂ A which is the Lie group giving the symmetry of the
spacetime M . If this has N independent parameters then ka, a = 1, 2, . . . , N , are independent
Killing vectors which satisfy ka µ;ν + ka ν;µ = 0. Their corresponding Lie derivatives form a
basis of the Lie algebra i(M) of the group I (M) [9].

However, in practice we are interested to find the operators of the relativistic quantum
theory related to these geometric objects which describe the symmetry of the background. For
this reason we focus upon the operator-valued representations [21] of the group I (M) and its
algebra. The scalar field ψ : M → C transforms under isometries as ψ(x) → ψ ′[φξ (x)] =
ψ(x). This rule defines the representation φξ → Tξ of the group I (M) whose operators
have the action ψ ′ = Tξψ = ψ ◦ φ−1

ξ . Thus, the operators of infinitesimal transformations,
Tξ = 1 − iξaLa + · · · , depend on the basis generators

La = −ikµa ∂µ a = 1, 2, . . . , N (24)

which are completely determined by the Killing vectors. From equation (22) we see that they
obey the commutation rules

[La,Lb] = icabcLc (25)

given by the structure constants of I (M). In other words they form a basis of the operator-
valued representation of the Lie algebra i(M) in a carrier space of scalar fields. Notice that in
the usual quantum mechanics the operators similar to the generatorsLa are called often orbital
generators.

3.2. The group of external symmetry

The problem is how the whole geometric framework of the theories with spin may be
transformed under isometries where we explicitly use the local frames. Since the isometry is
a general coordinate transformation it changes the relative positions of the local frames with
respect to the natural ones. This fact may be an impediment when one intends to study the
symmetries of the theories with spin in local frames. For this reason it is natural to suppose
that the good symmetry transformations we need are isometries preceded by appropriate gauge
transformations which should assure that not only the form of the metric tensor are conserved
but the form of the tetrad field components too. However, these transformations are nothing
other than particular combined transformations whose automorphisms are isometries.

Thus we arrive at the main point of our proposal. We introduce the external symmetry
transformations, (Aξ , φξ ), as particular combined transformations involving isometries, φξ ∈
I (M), and corresponding gauge transformations, Aξ ∈ G, necessary to preserve the gauge.
We assume that in a fixed gauge, given by the tetrad fields e and ê, Aξ is defined by

�α̂ ·
· β̂[Aξ(x)] = êα̂µ[φξ (x)]

∂φ
µ
ξ (x)

∂xν
eν
β̂
(x) (26)

with the supplementary condition Aξ=0(x) = 1 ∈ SL(2,C). Since φξ is an isometry,
equation (23) guarantees that �[Aξ(x)] ∈ L

↑
+ and, implicitly, Aξ(x) ∈ SL(2,C). Then

the transformation laws of our fields are

(Aξ , φξ ) :

x → x ′ = φξ (x)

e(x) → e′(x ′) = e[φξ (x)]

ê(x) → ê′(x ′) = ê[φξ (x)]

ψρ(x) → ψ ′
ρ(x

′) = ρ[Aξ(x)]ψρ(x).

(27)

The main virtue of these transformations is that they leave invariant the form of the operators
of the field equations, Eρ , in local frames. This is because the components of the tetrad fields
and, consequently, the covariant derivatives in local frames, Dρ

α̂
, do not change their form.
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For small ξa the covariant SL(2,C) parameters of Aξ(x) ≡ A[ωξ(x)] can be written as

ω
α̂β̂

ξ (x) = ξa2
α̂β̂
a (x) + · · · where, according to equations (6), (8) and (26), we have

2α̂β̂
a ≡ ∂ω

α̂β̂

ξ

∂ξa

∣∣∣∣∣∣
ξ=0

= (êα̂µ k
µ
a,ν + êα̂ν,µk

µ
a )e

ν

λ̂
ηλ̂β̂ . (28)

We must specify that these functions are antisymmetric if and only if ka are Killing vectors.
This indicates that the association among isometries and the gauge transformations defined by
equation (26) is correct.

It remains to show that the transformations (Aξ , φξ ) form a Lie group related to I (M).
Starting with equation (26) after a little calculation we find that

(Aξ ′ ◦ φξ ) × Aξ = Af(ξ ′,ξ) (29)

and, according to equations (14) and (19), we obtain

(Aξ ′ , φξ ′) ∗ (Aξ , φξ ) = (Af (ξ ′,ξ), φf (ξ ′,ξ)) (30)

and (Aξ=0, φξ=0) = (Id, id). Thus we have shown that the pairs (Aξ , φξ ) form a Lie group
with respect to the operation ∗. We say that this is the external symmetry group of M and we
denote it by S(M) ⊂ G̃. From equation (30) we understand that S(M) is locally isomorphic
with I (M) and, therefore, the Lie algebra of S(M), denoted by s(M), is isomorphic with
i(M) having the same structure constants. In our opinion, S(M) must be isomorphic with
the universal covering group of I (M) since it has the topology induced by SL(2,C) which is
simply connected. In general, the number of group parameters of I (M) or S(M) (which is
equal to the number of the independent Killing vectors of M) can be 0 � N � 10.

The form of the external symmetry transformations is strongly dependent on the choice of
the local chart as well as that of the tetrad gauge. If we change simultaneously the gauge and
the coordinates with the help of a combined transformation (A, φ) then each (Aξ , φξ ) ∈ S(M)

transforms as

(Aξ , φξ ) → (A′
ξ , φ

′
ξ ) = (A, φ) ∗ (Aξ , φξ ) ∗ (A, φ)−1 (31)

which means that

A′
ξ = {[(A ◦ φξ ) × Aξ ] × A−1} ◦ φ−1 (32)

φ′
ξ = (φ ◦ φξ ) ◦ φ−1. (33)

Obviously, these transformations define automorphisms of S(M).

3.3. Representations

The last of equations (27) which gives the transformation law of the field ψρ defines the
operator-valued representation (Aξ , φξ ) → T

ρ
ξ of the group S(M),

(T
ρ
ξ ψρ)[φξ (x)] = ρ[Aξ(x)]ψρ(x) (34)

which leaves invariant the operator of the field equation in local frames obeying

T
ρ
ξ Eρ(T

ρ
ξ )

−1 = Eρ. (35)

Since Aξ(x) ∈ SL(2,C) we say that this representation is induced by the representation ρ of
SL(2,C) [21, 22]. As we have shown in section 2.2, if ρ is a vector or tensor representation
(having only integer spin components) then the effect of the transformation (34) upon the
components carrying natural indices is due only to φξ . However, for the representations with
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half-integer spin the presence of Aξ is crucial since there are no natural indices. In addition,
this allows us to define the generators of the representations (34) for any spin.

The basis generators of the representations of the Lie algebra s(M) are the operators

Xρ
a = i

∂T
ρ
ξ

∂ξa

∣∣∣∣∣
ξ=0

= La + Sρa (36)

which appear as sums among the orbital generators defined by equation (24) and the spin terms
which have the action

(Sρa ψρ)(x) = ρ[Sa(x)]ψρ(x). (37)

This is determined by the form of the local sl(2,C) generators,

Sa(x) = i
∂Aξ (x)

∂ξa

∣∣∣∣
ξ=0

= 1

2
2α̂β̂

a (x)Sα̂β̂ (38)

that depend on the functions (28). Furthermore, if we derive equation (29) with respect to ξ and
ξ ′ then from equations (8), (20) and (28), after a few manipulations, we obtain the identities

ηα̂β̂ (2
α̂µ̂
a 2

β̂ν̂

b − 2
α̂µ̂

b 2β̂ν̂
a ) + kµa 2

µ̂ν̂

b,µ − k
µ

b 2
µ̂ν̂
a,µ + cabc2

µ̂ν̂
c = 0. (39)

Thus we have

[Sρa , S
ρ

b ] + [La, S
ρ

b ] − [Lb, S
ρ
a ] = icabcSρ

c (40)

and, according to equation (25), we find the expected commutation rules

[Xρ
a ,X

ρ

b ] = icabcX
ρ
c . (41)

Thus, we have derived the basis generators of the operator-valued representation of s(M)

induced by the linear representation ρ of sl(2,C). All the operators of this representation
commute with the operator Eρ since, according to equations (35) and (36), we have

[Eρ,X
ρ
a ] = 0 a = 1, 2, . . . , N. (42)

Therefore, for defining quantum modes we can use the set of commuting operators containing
the Casimir operators of s(M), the operators of its Cartan subalgebra and Eρ .

Finally, we must specify that the basis generators (36) of the representations of the s(M)

algebra can be written in covariant form as

Xρ
a = −ikµa D

ρ
µ + 1

2 ka µ;ν e
µ

α̂
eν
β̂
ρ(Sα̂β̂ ) (43)

generalizing thus the important result obtained in [11] for the Dirac field.

3.4. Manifest covariance

The action of the operatorsXρ
a depends on the choice of many elements: the natural coordinates,

the tetrad gauge, the group parametrization and the representation ρ. What is important
here is that they are strongly dependent on the tetrad gauge fixing even in the case of the
representations with integer spin. This is because the covariant parametrization of theSL(2,C)
group is defined with respect to the axes of the local frames. In general, if we consider the
representation (Aξ , φξ ) → T

ρ
ξ and we perform the transformation (31) then we derive the

equivalent representation, (A′
ξ , φ

′
ξ ) → T

′ρ
ξ . Its generators calculated from equations (32)

indicate that in this case the equivalence relations are much more complicated than those of
the usual theory of linear representations. Without entering into other technical details we
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specify that if we change only the gauge with the help of the transformation (A, id) then the
local sl(2,C) generators (38) transform as

Sa(x) → S ′
a(x) = A(x)Sa(x)A(x)

−1 + kσa (x)�α̂µ̂, σ [A(x)]�· µ̂
β̂ ·[A(x)]S

α̂β̂ (44)

while the orbital parts do not change their form. This means that the gauge transformations
change, in addition, the commutation relations among the spin and orbital parts of the generators
X

ρ
a .

The consequence is that we can find gauge fixings where the local sl(2,C) generators
Sa(x), a = 1, 2, . . . , n (n � N ), corresponding to a subgroup H ⊂ S(M), are independent on
x and, therefore, [Sρa , Lb] = 0 for all a = 1, 2, . . . , n and b = 1, 2, . . . , N . Then the operators
S
ρ
a , a = 1, 2, . . . , n are just the basis generators of an usual linear representation of H and

the field ψρ behaves manifestly covariant under the external symmetry transformations of this
subgroup. Of course, when H = S(M) we say simply that the field ψρ is manifest covariant.

The simplest examples are the manifest covariant fields of special relativity. Since here
the spacetime M is flat, the metric in Cartesian coordinates is gµν = ηµν and one can use the
inertial (local) frames with eµν = êµν = δµν . Then the isometries are just the transformations
x ′ = �[A(ω)]x − a of the Poincaré group, P↑

+ = T (4)�L
↑
+ [8]. If we denote by ξ (µν) = ωµν

the SL(2,C) parameters and by ξ (µ) = aµ those of the translation group T (4), then it is a
simple exercise to calculate the basis generators

X
ρ

(µ) = i∂µ (45)

X
ρ

(µν) = i(ηµαx
α∂ν − ηναx

α∂µ) + ρ(Sµν) (46)

which show us that ψρ transforms manifestly covariant. On the other hand, it is clear that the
group S(M) ≡ P̃↑

+ = T (4)�SL(2,C) is just the universal covering group of I (M) ≡ P↑
+ .

In general, there are many cases of curved spacetimes for which one can choose suitable
local frames allowing one to introduce manifest covariant fields with respect to a subgroup
H ⊂ S(M) or even the whole group S(M). In our opinion, this is possible only when H or
S(M) are at most subgroups of P̃↑

+ .

4. The central symmetry

Let us take as a first example the spacetimes M which have spherically symmetric static
chart that will be referred to here as central charts. These manifolds have the isometry group
I (M) = T (1) ⊗ SO(3) of time translations and space rotations.

4.1. Central charts

In a central chart with Cartesian coordinates x0 = t and xi (i, j, k, . . . = 1, 2, 3), the metric
tensor is time independent and transforms manifestly covariant under the rotationsR ∈ SO(3)
of the space coordinates,

t ′ = t x ′i = Ri ·
· j (ω)x

j = xi + ωi ·
· j x

j + · · · (47)

denoted simply by x → x ′ = Rx. Here the most general form of the line element,

ds2 = gµν(x) dxµ dxν = A(r) dt2 − [B(r)δij + C(r)xixj ] dxi dxj (48)

may involve three functions, A, B and C, depending only on the Euclidean norm of �x, r = |�x|.
In applications it is convenient to replace these functions by new ones, u, v and w, defined as

A = w2 B = w2

v2
C = 1

r2

(
w2

u2
− w2

v2

)
. (49)



External symmetry in general relativity 9187

Other useful central charts are those with spherical coordinates, r , θ , φ, commonly
associated with the Cartesian space ones. Here the line elements are

ds2 = w2 dt2 − w2

u2
dr2 − w2

v2
r2(dθ2 + sin2 θ dφ2). (50)

In these charts we see that the advantage of the new functions we have introduced is of simple
transformation laws under the isotropic dilations which change only the radial coordinate,
r → r ′(r), without affecting the central symmetry of the line element. These transformations,

u′(r ′) = u(r)

∣∣∣∣dr ′(r)
dr

∣∣∣∣ v′(r ′) = v(r)
r ′(r)
r

w′(r ′) = w(r) (51)

allow one to choose desired forms for the functions u, v and w.

4.2. The Cartesian gauge

The Cartesian gauge in central charts was mentioned some time ago [15] but is little used in
concrete problems since it leads to complicated calculations in spherical coordinates. However,
in Cartesian coordinates this gauge has the advantage of explicitly pointing out the global central
symmetry of the manifold. In [12] we proposed a version of Cartesian gauge in central charts
with Cartesian coordinates that preserve the manifest covariance under rotations (47) in the
sense that the 1-forms dx̂µ̂ = êµ̂α (x) dxα transform as

dx̂µ̂ → dx̂ ′µ̂ = êµ̂α (x
′) dx ′α = (R dx̂)µ̂. (52)

If the line element has the form (48) then the most general choice of the tetrad fields with the
above property is

ê0
0 = â(r) ê0

i = êi0 = 0 êij = b̂(r)δij + ĉ(r)xixj + d̂(r)εijkx
k (53)

e0
0 = a(r) e0

i = ei0 = 0 eij = b(r)δij + c(r)xixj + d(r)εijkx
k (54)

where, according to (3), (48) and (49), we must have

â = w b̂ = w

v
cosα ĉ = 1

r2

(w
u

− w

v
cosα

)
d̂ = 1

r

w

v
sin α (55)

a = 1

w
b = v

w
cosα c = 1

r2

( u

w
− v

w
cosα

)
d = −1

r

v

w
sin α. (56)

The angle α is an arbitrary function of r which is not explicitly involved in the expression of
the metric tensor since it represents the angle of an arbitrary rotation of the local frame around
the direction of �x, that does not change the relative position of �x with respect to this frame.

When one defines the metric tensor such that gµν |r=0 = ηµν then we have u(0)2 = v(0)2 =
w(0)2 = 1 and it is natural to take α(0) = 0. On the other hand, from equations (55) and (56)
we see that the function w must be positively defined in order to keep the same sense for the
time axes of the natural and local frames. In addition, it is convenient to consider that the
function u is positively defined too. However, the function v = ηP|v| has the sign given by
the relative parity ηP which takes the value ηP = 1 when the space axes of the local frame at
x = 0 are parallel with those of the natural frame, and ηP = −1 if these are antiparallel.

Now we have all the elements we need to calculate the generators of the representations
T ρ of the group S(M). If we denote by ξ (0) the parameter of the time translations and by
ξ (i) = εijkω

jk/2 the parameters of the rotations (47), we find that the local sl(2,C) generators
of equation (38) are just the su(2) ones, i.e. S(i)(x) = Si = εijkSjk/2, such that the basis
generators read

X
ρ

(0) = i∂t X
ρ

(i) = L(i) + ρ(Si) (57)
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where L(i) = −iεijkxj ∂k are the usual components of the orbital angular momentum. Thus
we obtain that the group S(M) = T (1)⊗ SU(2) is the universal covering group of I (M). Its
transformations are gauge transformations A�ξ ∈ SU(2), independent of x, combined with the
isometries of I (M) given by x → x ′ = R(A�ξ ) x and t → t ′ = t−ξ (0). This means that, in this
gauge, the field ψρ transforms manifestly covariant. Moreover, the physical significance of
the basis generators is the usual one, namelyXρ

(0) is the Hamiltonian operator whileXρ

(i) ≡ J
ρ

(i)

are the components of the whole angular momentum operator.
We conclude that, in our Cartesian gauge, the local frames play the same role as the usual

Cartesian rest frames of the central sources in flat spacetime since their axes are just those of
projections of the angular momenta.

4.3. The diagonal gauge

In other gauge fixings the basis generators are quite different. A tetrad gauge widely used in
central charts with spherical coordinates is the diagonal gauge defined by the 1-forms [16]

dx̂0
s = w dt dx̂1

s = w

u
dr dx̂2

s = r
w

v
dθ dx̂3

s = r
w

v
sin θ dφ. (58)

In this gauge the angular momentum operators of the canonical basis (where J(±) = J(1)±iJ(2))
are [10]

J
ρ

(±) = L(±) +
e±iφ

sin θ
ρ(S23) J

ρ

(3) = L(3). (59)

Thus one obtains a representation of SU(2) where the spin terms do not commute with the
orbital ones and, therefore, the fieldψρ does not transform manifestly covariant under rotations.
In this case we can say that the spin part of the central symmetry remains partially hidden
because of the diagonal gauge which determines special positions of the local frames with
respect to the natural one. However, when this is an impediment one can change this gauge
into the Cartesian one at any time by using a simple local rotation. For the flat spacetimes these
transformations and their effects upon the Dirac equation are studied in [23]. Note that the
form of the spin generators as well as that of the mentioned rotation depend on the enumeration
of the 1-forms (58).

5. The dS and AdS symmetries

The backgrounds with highest external symmetry are the dS and the AdS spacetimes. We shall
briefly discuss both these manifolds, denoted by Mε where ε = 1 for the dS case and ε = −1
for the AdS one. Our goal here is to calculate the generators of the representations of the group
S(Mε) induced by those of SL(2,C).

The dS and AdS spacetimes are hyperboloids in the (4 + 1)- or (3 + 2)-dimensional
flat spacetimes, M5

ε , of coordinates ZA, A,B, . . . = 0, 1, 2, 3, 5, and the metric η(ε) =
diag(1,−1,−1,−1,−ε). The equation of the hyperboloid of radius r0 = 1/ω̂ reads

−ηAB(ε)Z
AZB = ε r0

2. (60)

From their definitions it results that the dS or AdS spacetimes are homogeneous spaces of
the pseudo-orthogonal groups SO(4, 1) or SO(3, 2) which play the role of gauge groups of
the metric η(ε) (for ε = 1 and −1 respectively) and represent just the isometry groups of
these manifolds, G[η(ε)] = I (Mε). Then it is natural to use the covariant real parameters
ωAB = −ωBA since in this parametrization the orbital basis generators of the representations
of G[η(ε)], carried by the spaces of functions over M5

ε , have the usual form

L5
AB = i[ηAC(ε)Z

C∂B − ηBC(ε)Z
C∂A]. (61)



External symmetry in general relativity 9189

They will give us directly the orbital basis generators of the representations of S(Mε) in the
carrier spaces of the functions defined over dS or AdS spacetimes.

5.1. Central charts

The hyperboloid equation can be solved in Cartesian dS/AdS coordinates, x0 = t and xi

(i = 1, 2, 3), which satisfy

Z5 = ω̂−1χε(r)

{
cosh ω̂t if ε = 1

cos ω̂t if ε = −1

Z0 = ω̂−1χε(r)

{
sinh ω̂t if ε = 1

sin ω̂t if ε = −1

Zi = xi

(62)

where we have denoted χε(r) = √
1 − ε ω2r2. The line elements

ds2 = ηAB(ε) dZA dZB

= χε(r)
2 dt2 − dr2

χε(r)2
− r2(dθ2 + sin2 θ dφ2) (63)

are defined on the radial domains Dr = [0, 1/ω̂) or Dr = [0, ∞) for dS or AdS respectively.
We calculate the Killing vectors and the orbital generators of the external symmetry in the

Cartesian coordinates defined by equation (62) and the mentioned parametrization of I (Mε)

starting with the identification ξ (AB) = ωAB . Then, from equations (24) and (61), after a little
calculation, we obtain the orbital basis generators

L(05) = iε

ω̂
∂t (64)

L(j5) = iε

ω̂
χε(r)

(
cosh ω̂t

cos ω̂t

)
∂j +

ixj

χε(r)

(
sinh ω̂t

sin ω̂t

)
∂t (65)

L(0j) = i

ω̂
χε(r)

(
sinh ω̂t

sin ω̂t

)
∂j +

ixj

χε(r)

(
cosh ω̂t

cos ω̂t

)
∂t (66)

L(ij) = −i (xi ∂j − xj ∂i). (67)

Furthermore, we consider the Cartesian tetrad gauge defined by equations (53)–(56) where,
according to equation (63), we have

u(r) = χε(r)
2 v(r) = w(r) = χε(r). (68)

In addition we take α = 0. In this gauge we obtain the following local sl(2,C) generators

S(05)(x) = 0 (69)

S(j5)(x) = S0j

(
sinh ω̂t

sin ω̂t

)
+

1

r2
[χε(r) − 1]

[
ε
Sjkx

k

ω̂

(
cosh ω̂t

cos ω̂t

)
− S0kx

kxj

χε(r)

(
sinh ω̂t

sin ω̂t

) ]
(70)

S(0j)(x) = S0j

(
cosh ω̂t

cos ω̂t

)
+

1

r2
[χε(r) − 1]

[
Sjkx

k

ω̂

(
sinh ω̂t

sin ω̂t

)
− S0kx

kxj

χε(r)

(
cosh ω̂t

cos ω̂t

) ]
(71)

S(ij)(x) = Sij . (72)

With their help we can write the action of the spin terms (37) and, implicitly, that of the
basis generators X

ρ

(AB) = L(AB) + S
ρ

(AB) of the representations of S(Mε) induced by the
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representations ρ of SL(2,C). Thus, it is not difficult to show that S(Mε) is isomorphic
with the universal covering group of I (Mε) which in both cases (ε = ±1) is a subgroup of
the SU(2, 2) group. As expected, in central charts and Cartesian gauge the fields transform
manifestly covariant only under the transformations of the subgroup SU(2) ⊂ S(Mε).

5.2. Minkowskian charts

Another possibility is to solve the hyperboloid equation (60) in Minkowskian charts [1] where
the coordinates, xµ, are defined by

Z5 = ω̂−1χ̃ε(s) Zµ = xµ (73)

with χ̃ε(s) =
√

1 + ε ω̂2s2 and s2 = ηµνx
µxν . In these coordinates it is convenient to identify

the hat indices with the usual ones and to not raise or lower these indices. Then we find that
the metric tensor,

gµν(x) = ηµν − ε ω̂2

χ̃ε(s)2
ηµαx

αηνβx
β (74)

transforms manifestly covariant under the global L↑
+ transformations, x ′µ → xµ = �µ ·

· ν x
ν .

Moreover, the whole theory remains manifest covariant if we use the tetrad fields in the Lorentz
gauge defined as [17]

eµν (x) = δµν + hε(s)ηναx
αxµ êµν (x) = δµν + ĥε(s)ηναx

αxµ (75)

where

hε(s) = 1

s2
[χ̃ε(s) − 1] ĥε(s) = 1

s2

[
1

χ̃ε(s)
− 1

]
. (76)

First we calculate the SO(4, 1) or SO(3, 2) orbital generators,

L(µ5) = iε

ω̂
χ̃ε(s)∂µ (77)

L(µν) = i(ηµαx
α∂ν − ηναx

α∂µ) (78)

which are independent on the gauge fixing. We observe that in Minkowskian charts ∂t is
no more a Killing vector field as in the case of the central ones. However, here we have
another advantage, namely that of the Lorentz gauge in which the local sl(2,C) generators of
equation (37) have the form

S(µ5)(x) = − ε

ω̂s2
[χ̃ε(s) − 1]Sµαx

α (79)

S(µν)(x) = Sµν (80)

showing that the field ψρ transforms manifestly covariant under the whole SL(2,C) subgroup
of S(Mε). Since these representations are induced just by those of SL(2,C) we can say that
in this gauge the manifest covariance is maximal.

6. Concluding remarks

The external symmetry in general relativity discussed here is the natural generalization of the
Poincaré covariance of special relativity to curved spacetimes with isometries. When these
exist, one can define the group S(M) and its operator-valued representations carried by spaces
of fields with arbitrary spin. In general, these representations are not manifestly covariant since
they are induced by the linear representations of the SL(2,C) group which is independent on
the concrete structure of S(M). In addition, their form is strongly dependent on the tetrad
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fields which seem to play here a similar role to the boosts in the theory of the Wigner-induced
representations of the P̃↑

+ group [8]. In any event, these representations are new mathematical
objects the study of which could be interesting, especially as regards their classification.

From the physical point of view, the systems with isometries can be free fields defined
on backgrounds with given symmetry or interacting matter fields coupled to a gravitational
field with symmetric boundary conditions. The Killing vectors of these systems give us the
basis generators of the operator-valued representations of the s(M) algebra which commute
with the operators of the covariant field equations. We obtain thus a collection of conserved
observables which offers us the possibility to choose suitable sets of commuting operators
which should determine the quantum states. On the other hand, since the concrete form of
these generators depends on the choice of both the natural and local frames, the commutation
rules among their spin and orbital parts are determined by the tetrad gauge. Consequently, the
results of the local measurement of the spin observables may depend on the choice of the local
frames. This suggests that it should be interesting to investigate new spin effects in different
charts and tetrad gauge fixings.

In the general case of interacting matter fields coupled with gravity one can find solutions
without isometries for which our theory of external symmetry does not make sense. Of course,
we remain with the combined transformations of the group G̃ but, as mentioned, these are not
able to produce specific conserved magnitudes (apart from the stress-energy tensor of the matter
fields [1]). Therefore, if we want to find new invariants we are forced to look for generalizations
of the external symmetry transformations to the systems without isometries. In our opinion,
these may be transformations of a well defined Lie group which should leave invariant the
form of the field equations in local frames. These could be new generalized combined
transformations embedding geometric, gauge and even internal symmetry transformations in
reasonable physical limits, as those fixed by the no-go theorem in the flat spacetime. Thus we
get a new complicated and sensitive problem that may be considered in the context of the actual
theories with large number of extra dimensions and high symmetries or supersymmetries.
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Cotăescu I I 1999 Phys. Rev. D 60 124006

[13] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)
[14] Thaller B 1992 The Dirac Equation (Berlin: Springer)
[15] Brill D R and Wheeler J A 1957 Rev. Mod. Phys. 29 465
[16] Brill D R and Cohen J A 1966 J. Math. Phys. 7 238

Davis T M and Ray J R 1975 J. Math. Phys. 16 75
Kriori K D and Kakati H 1995 Gen. Relativ. Grav. 20 1237
Soares I D and Tiomno J 1996 Phys. Rev. D 54 2808
Hammond R 1995 Class. Quantum Grav. 12 279
Villalba V M 1993 Mod. Phys. Lett. A 8 2351

[17] Pol’shin S A 2000 J. Phys. A: Math. Gen. 33 5077
[18] Guendelman E I 1999 Mod. Phys. Lett. A 14 1043

Guendelman E I 1999 Mod. Phys. Lett. A 14 1397
Guendelman E I 2000 Class. Quantum Grav. 17 361
(Guendelman E I 2000 Preprint gr-qc/0004011)
Guendelman E I 2000 Preprint hep-th/0005041
Guendelman E I 2000 Preprint hep-th/0006079

[19] Gilmore R 1974 Lie Groups, Lie Algebras and Some of Their Applications (New York: Wiley)
[20] Hamermesh M 1962 Group Theory and its Applications to Physical Problems (Reading, MA: Addison-Wesley)
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